Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38558984

RESUMO

Breast cancer bone metastases increase fracture risk and are a major cause of morbidity and mortality among women. Upon colonization by tumor cells, the bone microenvironment undergoes profound reprogramming to support cancer progression that disrupts the balance between osteoclasts and osteoblasts, leading to bone lesions. Whether such reprogramming affects matrix-embedded osteocytes remains poorly understood. Here, we demonstrate that osteocytes in breast cancer bone metastasis develop premature senescence and a distinctive senescence-associated secretory phenotype (SASP) that favors bone destruction. Single-cell RNA sequencing identified osteocytes from mice with breast cancer bone metastasis enriched in senescence and SASP markers and pro-osteoclastogenic genes. Using multiplex in situ hybridization and AI-assisted analysis, we detected osteocytes with senescence-associated distension of satellites, telomere dysfunction, and p16Ink4a expression in mice and patients with breast cancer bone metastasis. In vitro and ex vivo organ cultures showed that breast cancer cells promote osteocyte senescence and enhance their osteoclastogenic potential. Clearance of senescent cells with senolytics suppressed bone resorption and preserved bone mass in mice with breast cancer bone metastasis. These results demonstrate that osteocytes undergo pathological reprogramming by breast cancer cells and identify osteocyte senescence as an initiating event triggering bone destruction in breast cancer metastases.

2.
Curr Osteoporos Rep ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457001

RESUMO

PURPOSE OF REVIEW: To describe the contributions of osteocytes to the lesions in Paget's disease, which are characterized by locally overactive bone resorption and formation. RECENT FINDINGS: Osteocytes, the most abundant cells in bone, are altered in Paget's disease lesions, displaying increased size, decreased canalicular length, incomplete differentiation, and less sclerostin expression compared to controls in both patients and mouse models. Pagetic lesions show increased senescent osteocytes that express RANK ligand, which drives osteoclastic bone resorption. Abnormal osteoclasts in Paget's disease secrete abundant IGF1, which enhances osteocyte senescence, contributing to lesion formation. Recent data suggest that osteocytes contribute to lesion formation in Paget's disease by responding to high local IGF1 released from abnormal osteoclasts. Here we describe the characteristics of osteocytes in Paget's disease and their role in bone lesion formation based on recent results with mouse models and supported by patient data.

3.
Cell Rep Med ; 4(7): 101110, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37467717

RESUMO

Multiple myeloma (MM) is an incurable malignancy of plasma cells. To identify targets for MM immunotherapy, we develop an integrated pipeline based on mass spectrometry analysis of seven MM cell lines and RNA sequencing (RNA-seq) from 900+ patients. Starting from 4,000+ candidates, we identify the most highly expressed cell surface proteins. We annotate candidate protein expression in many healthy tissues and validate the expression of promising targets in 30+ patient samples with relapsed/refractory MM, as well as in primary healthy hematopoietic stem cells and T cells by flow cytometry. Six candidates (ILT3, SEMA4A, CCR1, LRRC8D, FCRL3, IL12RB1) and B cell maturation antigen (BCMA) present the most favorable profile in malignant and healthy cells. We develop a bispecific T cell engager targeting ILT3 that shows potent killing effects in vitro and decreased tumor burden and prolonged mice survival in vivo, suggesting therapeutic relevance. Our study uncovers MM-associated antigens that hold great promise for immune-based therapies of MM.


Assuntos
Mieloma Múltiplo , Animais , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Imunoterapia/métodos , Linfócitos T , Plasmócitos/metabolismo
4.
JCI Insight ; 8(14)2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37338990

RESUMO

We previously reported that measles virus nucleocapsid protein (MVNP) expression in osteoclasts (OCLs) of patients with Paget disease (PD) or targeted to the OCL lineage in MVNP-transgenic mice (MVNP mice) increases IGF1 production in osteoclasts (OCL-IGF1) and leads to development of PD OCLs and pagetic bone lesions (PDLs). Conditional deletion of Igf1 in OCLs of MVNP mice fully blocked development of PDLs. In this study, we examined whether osteocytes (OCys), key regulators of normal bone remodeling, contribute to PD. OCys in PDLs of patients and of MVNP mice expressed less sclerostin, and had increased RANKL expression compared with OCys in bones from WT mice or normal patients. To test whether increased OCL-IGF1 is sufficient to induce PDLs and PD phenotypes, we generated TRAP-Igf1 (T-Igf1) transgenic mice to determine whether increased IGF1 expression in the absence of MVNP in OCLs is sufficient to induce PDLs and pagetic OCLs. We found that T-Igf1 mice at 16 months of age developed PD OCLs, PDLs, and OCys, with decreased sclerostin and increased RANKL, similar to MVNP mice. Thus, pagetic phenotypes could be induced by OCLs expressing increased IGF1. OCL-IGF1 in turn increased RANKL production in OCys to induce PD OCLs and PDLs.


Assuntos
Osteíte Deformante , Osteoclastos , Animais , Camundongos , Osso e Ossos/metabolismo , Expressão Gênica , Camundongos Transgênicos , Osteíte Deformante/metabolismo , Osteoclastos/metabolismo , Osteócitos/metabolismo
5.
Neoplasia ; 28: 100785, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35390742

RESUMO

In multiple myeloma (MM), communication via Notch signaling in the tumor niche stimulates tumor progression and bone destruction. We previously showed that osteocytes activate Notch, increase Notch3 expression, and stimulate proliferation in MM cells. We show here that Notch3 inhibition in MM cells reduced MM proliferation, decreased Rankl expression, and abrogated the ability of MM cells to promote osteoclastogenesis. Further, Notch3 inhibition in MM cells partially prevented the Notch activation and increased proliferation induced by osteocytes, demonstrating that Notch3 mediates MM-osteocyte communication. Consistently, pro-proliferative and pro-osteoclastogenic pathways were upregulated in CD138+ cells from newly diagnosed MM patients with high vs. low NOTCH3 expression. These results show that NOTCH3 signaling in MM cells stimulates proliferation and increases their osteoclastogenic potential. In contrast, Notch2 inhibition did not alter MM cell proliferation or communication with osteocytes. Lastly, mice injected with Notch3 knock-down MM cells had a 50% decrease in tumor burden and a 50% reduction in osteolytic lesions than mice bearing control MM cells. Together, these findings identify Notch3 as a mediator of cell communication among MM cells and between MM cells and osteocytes in the MM tumor niche and warrant future studies to exploit Notch3 as a therapeutic target to treat MM.


Assuntos
Comunicação Celular , Mieloma Múltiplo , Osteócitos , Osteólise , Receptor Notch3 , Animais , Humanos , Camundongos , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Osteócitos/metabolismo , Osteócitos/patologia , Osteogênese , Receptor Notch3/genética , Receptor Notch3/metabolismo , Transdução de Sinais
6.
Cancer Res ; 81(19): 5102-5114, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34348968

RESUMO

Systemic inhibition of Notch with γ-secretase inhibitors (GSI) decreases multiple myeloma tumor growth, but the clinical use of GSI is limited due to its severe gastrointestinal toxicity. In this study, we generated a GSI Notch inhibitor specifically directed to the bone (BT-GSI). BT-GSI administration decreased Notch target gene expression in the bone marrow, but it did not alter Notch signaling in intestinal tissue or induce gut toxicity. In mice with established human or murine multiple myeloma, treatment with BT-GSI decreased tumor burden and prevented the progression of multiple myeloma-induced osteolytic disease by inhibiting bone resorption more effectively than unconjugated GSI at equimolar doses. These findings show that BT-GSI has dual anti-myeloma and anti-resorptive properties, supporting the therapeutic approach of bone-targeted Notch inhibition for the treatment of multiple myeloma and associated bone disease. SIGNIFICANCE: Development of a bone-targeted Notch inhibitor reduces multiple myeloma growth and mitigates cancer-induced bone destruction without inducing the gastrointestinal toxicity typically associated with inhibition of Notch.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Receptores Notch/antagonistas & inibidores , Animais , Conservadores da Densidade Óssea/química , Conservadores da Densidade Óssea/farmacologia , Linhagem Celular Tumoral , Ácido Clodrônico/análogos & derivados , Ácido Clodrônico/química , Ácido Clodrônico/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Relação Dose-Resposta a Droga , Humanos , Camundongos , Mieloma Múltiplo/etiologia , Osteólise , Transdução de Sinais/efeitos dos fármacos , Microtomografia por Raio-X , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Cell Biochem ; 122(3-4): 335-348, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33107091

RESUMO

Paget's disease (PD) is characterized by increased numbers of abnormal osteoclasts (OCLs) that drive exuberant bone formation, but the mechanisms responsible for the increased bone formation remain unclear. We previously reported that OCLs from 70% of PD patients express measles virus nucleocapsid protein (MVNP), and that transgenic mice with targeted expression of MVNP in OCLs (MVNP mice) develop bone lesions and abnormal OCLs characteristic of PD. In this report, we examined if OCL-derived sphingosine-1-phosphate (S1P) contributed to the abnormal bone formation in PD, since OCL-derived S1P can act as a coupling factor to increase normal bone formation via binding S1P-receptor-3 (S1PR3) on osteoblasts (OBs). We report that OCLs from MVNP mice and PD patients expressed high levels of sphingosine kinase-1 (SphK-1) compared with wild-type (WT) mouse and normal donor OCLs. SphK-1 production by MVNP-OCLs was interleukin-6 (IL-6)-dependent since OCLs from MVNP/IL-6-/- mice expressed lower levels of SphK-1. Immunohistochemistry of bone biopsies from a normal donor, a PD patient, WT and MVNP mice confirmed increased expression levels of SphK-1 in OCLs and S1PR3 in OBs of the PD patient and MVNP mice compared with normal donor and WT mice. Further, MVNP-OCLs cocultured with OBs from MVNP or WT mice increased OB-S1PR3 expression and enhanced expression of OB differentiation markers in MVNP-OBs precursors compared with WT-OBs, which was mediated by IL-6 and insulin-like growth factor 1 secreted by MVNP-OCLs. Finally, the addition of an S1PR3 antagonist (VPC23019) to WT or MVNP-OBs treated with WT and MVNP-OCL-conditioned media (CM) blocked enhanced OB differentiation of MVNP-OBs treated with MVNP-OCL-CM. In contrast, the addition of the SIPR3 agonist, VPC24191, to the cultures enhanced osterix and Col-1A expression in MVNP-OBs treated with MVNP-OCL-CM compared with WT-OBs treated with WT-OCL-CM. These results suggest that IL-6 produced by PD-OCLs increases S1P in OCLs and S1PR3 on OBs, to increase bone formation in PD.


Assuntos
Lisofosfolipídeos/metabolismo , Osteíte Deformante/metabolismo , Osteoclastos/metabolismo , Esfingosina/análogos & derivados , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Immunoblotting , Imuno-Histoquímica , Interleucina-6/metabolismo , Masculino , Camundongos , Osteoclastos/citologia , Osteogênese/fisiologia , Fosforilação/fisiologia , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo
8.
JCI Insight ; 5(6)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32078587

RESUMO

We report that transgenic mice expressing measles virus nucleocapsid protein (MVNP) in osteoclasts (OCLs) (MVNP mice) are Paget's disease (PD) models and that OCLs from patients with PD and MVNP mice express high levels of OCL-derived IGF1 (OCL-IGF1). To determine OCL-IGF1's role in PD and normal bone remodeling, we generated WT and MVNP mice with targeted deletion of Igf1 in OCLs (Igf1-cKO) and MVNP/Igf1-cKO mice, and we assessed OCL-IGF1's effects on bone mass, bone formation rate, EphB2/EphB4 expression on OCLs and osteoblasts (OBs), and pagetic bone lesions (PDLs). A total of 40% of MVNP mice, but no MVNP/Igf1-cKO mice, had PDLs. Bone volume/tissue volume (BV/TV) was decreased by 60% in lumbar vertebrae and femurs of MVNP/Igf1-cKO versus MVNP mice with PDLs and by 45% versus all MVNP mice tested. Bone formation rates were decreased 50% in Igf1-cKO and MVNP/Igf1-cKO mice versus WT and MVNP mice. MVNP mice had increased EphB2 and EphB4 levels in OCLs/OBs versus WT and MVNP/Igf1-cKO, with none detectable in OCLs/OBs of Igf1-cKO mice. Mechanistically, IL-6 induced the increased OCL-IGF1 in MVNP mice. These results suggest that high OCL-IGF1 levels increase bone formation and PDLs in PD by enhancing EphB2/EphB4 expression in vivo and suggest OCL-IGF1 may contribute to normal bone remodeling.


Assuntos
Remodelação Óssea/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Osteíte Deformante/metabolismo , Osteoclastos/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Proteínas do Nucleocapsídeo , Osteíte Deformante/patologia
9.
Oncotarget ; 10(28): 2709-2721, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31105871

RESUMO

Despite recent progress in its treatment, Multiple Myeloma (MM) remains incurable and its associated bone disease persists even after complete remission. Thus, identification of new therapeutic agents that simultaneously suppress MM growth and protect bone is an unmet need. Herein, we examined the effects of Aplidin, a novel anti-cancer marine-derived compound, on MM and bone cells. In vitro, Aplidin potently inhibited MM cell growth and induced apoptosis, effects that were enhanced by dexamethasone (Dex) and bortezomib (Btz). Aplidin modestly reduced osteocyte/osteoblast viability and decreased osteoblast mineralization, effects that were enhanced by Dex and partially prevented by Btz. Further, Aplidin markedly decreased osteoclast precursor numbers and differentiation, and reduced mature osteoclast number and resorption activity. Moreover, Aplidin reduced Dex-induced osteoclast differentiation and further decreased osteoclast number when combined with Btz. Lastly, Aplidin alone, or suboptimal doses of Aplidin combined with Dex or Btz, decreased tumor growth and bone resorption in ex vivo bone organ cultures that reproduce the 3D-organization and the cellular diversity of the MM/bone marrow niche. These results demonstrate that Aplidin has potent anti-myeloma and anti-resorptive properties, and enhances proteasome inhibitors blockade of MM growth and bone destruction.

10.
J Hematol Oncol ; 11(1): 123, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30286780

RESUMO

BACKGROUND: In spite of major advances in treatment, multiple myeloma (MM) is currently an incurable malignancy due to the emergence of drug-resistant clones. We previously showed that MM cells upregulate the transcriptional repressor, growth factor independence 1 (Gfi1), in bone marrow stromal cells (BMSCs) that induces prolonged inhibition of osteoblast differentiation. However, the role of Gfi1 in MM cells is unknown. METHODS: Human primary CD138+ and BMSC were purified from normal donors and MM patients' bone marrow aspirates. Gfi1 knockdown and overexpressing cells were generated by lentiviral-mediated shRNA. Proliferation/apoptosis studies were done by flow cytometry, and protein levels were determined by Western blot and/or immunohistochemistry. An experimental MM mouse model was generated to investigate the effects of MM cells overexpressing Gfi1 on tumor burden and osteolysis in vivo. RESULTS: We found that Gfi1 expression is increased in patient's MM cells and MM cell lines and was further increased by co-culture with BMSC, IL-6, and sphingosine-1-phosphate. Modulation of Gfi1 in MM cells had major effects on their survival and growth. Knockdown of Gfi1 induced apoptosis in p53-wt, p53-mutant, and p53-deficient MM cells, while Gfi1 overexpression enhanced MM cell growth and protected MM cells from bortezomib-induced cell death. Gfi1 enhanced cell survival of p53-wt MM cells by binding to p53, thereby blocking binding to the promoters of the pro-apoptotic BAX and NOXA genes. Further, Gfi1-p53 binding could be blocked by HDAC inhibitors. Importantly, inoculation of MM cells overexpressing Gfi1 in mice induced increased bone destruction, increased osteoclast number and size, and enhanced tumor growth. CONCLUSIONS: These results support that Gfi1 plays a key role in MM tumor growth, survival, and bone destruction and contributes to bortezomib resistance, suggesting that Gfi1 may be a novel therapeutic target for MM.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Osteogênese/fisiologia , Fatores de Transcrição/biossíntese , Animais , Apoptose/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos
11.
J Clin Invest ; 126(3): 1012-22, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26878170

RESUMO

Paget's disease (PD) is characterized by focal and dramatic bone resorption and formation. Treatments that target osteoclasts (OCLs) block both pagetic bone resorption and formation; therefore, PD offers key insights into mechanisms that couple bone resorption and formation. Here, we evaluated OCLs from 3 patients with PD and determined that measles virus nucleocapsid protein (MVNP) was expressed in 70% of these OCLs. Moreover, transgenic mice with OCL-specific expression of MVNP (MVNP mice) developed PD-like bone lesions that required MVNP-dependent induction of high IL-6 expression levels in OCLs. In contrast, mice harboring a knockin of p62P394L (p62-KI mice), which is the most frequent PD-associated mutation, exhibited increased bone resorption, but not formation. Evaluation of OCLs from MVNP, p62-KI, and WT mice revealed increased IGF1 expression in MVNP-expressing OCLs that resulted from the high IL-6 expression levels in these cells. IL-6, in turn, increased the expression of coupling factors, specifically ephrinB2 on OCLs and EphB4 on osteoblasts (OBs). IGF1 enhanced ephrinB2 expression on OCLs and OB differentiation. Importantly, ephrinB2 and IGF1 levels were increased in MVNP-expressing OCLs from patients with PD and MVNP-transduced human OCLs compared with levels detected in controls. Further, anti-IGF1 or anti-IGF1R blocked Runx2 and osteocalcin upregulation in OBs cocultured with MVNP-expressing OCLs. These results suggest that in PD, MVNP upregulates IL-6 and IGF1 in OCLs to increase ephrinB2-EphB4 coupling and bone formation.


Assuntos
Vírus do Sarampo/fisiologia , Proteínas do Nucleocapsídeo/fisiologia , Osteíte Deformante/patologia , Osteoblastos/fisiologia , Animais , Estudos de Casos e Controles , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Efrina-B2/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-6/fisiologia , Camundongos Knockout , Osteíte Deformante/virologia , Osteoclastos/fisiologia , Receptor EphB4/metabolismo
12.
J Bone Miner Res ; 29(6): 1456-65, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24339057

RESUMO

Measles virus nucleocapsid protein (MVNP) expression in osteoclasts (OCLs) and mutation of the SQSTM1 (p62) gene contribute to the increased OCL activity in Paget's disease (PD). OCLs expressing MVNP display many of the features of PD OCLs. Interleukin-6 (IL-6) production is essential for the pagetic phenotype, because transgenic mice with MVNP targeted to OCLs develop pagetic OCLs and lesions, but this phenotype is absent when MVNP mice are bred to IL-6(-/-) mice. In contrast, mutant p62 expression in OCL precursors promotes receptor activator of NF-κB ligand (RANKL) hyperresponsivity and increased OCL production, but OCLs that form have normal morphology, are not hyperresponsive to 1,25-dihydroxyvitamin D3 (1,25-(OH)2 D3 ), nor produce elevated levels of IL-6. We previously generated p62(P394L) knock-in mice (p62KI) and found that although OCL numbers were increased, the mice did not develop pagetic lesions. However, mice expressing both MVNP and p62KI developed more exuberant pagetic lesions than mice expressing MVNP alone. To examine the role of elevated IL-6 in PD and determine if MVNP mediates its effects primarily through elevation of IL-6, we generated transgenic mice that overexpress IL-6 driven by the tartrate-resistant acid phosphatase (TRAP) promoter (TIL-6 mice) and produce IL-6 at levels comparable to MVNP mice. These were crossed with p62KI mice to determine whether IL-6 overexpression cooperates with mutant p62 to produce pagetic lesions. OCL precursors from p62KI/TIL-6 mice formed greater numbers of OCLs than either p62KI or TIL-6 OCL precursors in response to 1,25-(OH)2 D3 . Histomorphometric analysis of bones from p62KI/TIL-6 mice revealed increased OCL numbers per bone surface area compared to wild-type (WT) mice. However, micro-quantitative CT (µQCT) analysis did not reveal significant differences between p62KI/TIL-6 and WT mice, and no pagetic OCLs or lesions were detected in vivo. Thus, increased IL-6 expression in OCLs from p62KI mice contributes to increased responsivity to 1,25-(OH)2 D3 and increased OCL numbers, but is not sufficient to induce Paget's-like OCLs or bone lesions in vivo.


Assuntos
Interleucina-6/metabolismo , Osteíte Deformante/metabolismo , Osteíte Deformante/patologia , Osteoclastos/metabolismo , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/patologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Antígeno CD11b/metabolismo , Diferenciação Celular , Humanos , Camundongos , Camundongos Transgênicos , Proteínas do Nucleocapsídeo/metabolismo , Osteoblastos/patologia , Fenótipo , Células-Tronco/metabolismo , Células Estromais/patologia
13.
J Bone Miner Res ; 29(1): 90-102, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23794264

RESUMO

Paget's disease of bone (PDB) is characterized by abnormal osteoclasts with unique characteristics that include increased sensitivity of osteoclast progenitors to 1,25(OH)2 D3 , receptor activator of NF-κB ligand (RANKL), and TNF-α; increased osteoclast numbers; and increased expression of IL-6 and several transcription factors. We recently reported that measles virus nucleocapsid protein (MVNP) plays a key role in the development of these abnormal osteoclasts. MVNP can induce the pagetic osteoclast phenotype in vitro and in vivo in TRAP-MVNP transgenic mice. However, the molecular mechanisms by which MVNP generates pagetic osteoclasts have not been determined. TANK-binding kinase 1 (TBK1) and IκB kinase-ϵ (IKKϵ) are IKK family members that complex with MVNP and activate both IRF3 and NF-κB pathways. MVNP increases the amount of TBK1 protein in bone marrow monocytes (BMM). Interestingly, we found that RANKL increased TBK1 and IKKϵ early in osteoclast differentiation, suggesting a possible role in normal osteoclastogenesis. However, only TBK1 is further increased in osteoclasts formed by TRAP-MVNP BMM owing to increased TBK1 protein stability. TBK1 overexpression induced IL6 promoter reporter activity, and elevated endogenous IL6 mRNA and p65 NF-κB, TAF12, and ATF7 proteins in several cell lines. Overexpression of TBK1 was insufficient to induce pagetic osteoclasts from WT BMM but synergized with MVNP to increase pagetic osteoclast formation from TRAP-MVNP BMM. BX795 inhibition of TBK1 impaired MVNP-induced IL-6 expression in both NIH3T3 cells and BMM, and shRNA knockdown of Tbk1 in NIH3T3 cells impaired IL-6 secretion induced by MVNP and decreased TAF12 and ATF7, factors involved in 1,25(OH)2 D3 hypersensitivity of pagetic osteoclasts. Similarly, Tbk1 knockdown in BMM from TRAP-MVNP and WT mice specifically impaired development of the MVNP-induced osteoclast pagetic phenotype. These results demonstrate that TBK1 plays a critical role in mediating the effects of MVNP on osteoclast differentiation and on the expression of IL-6, a key contributor to the pagetic osteoclast phenotype.


Assuntos
Quinase I-kappa B/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Fosfatase Ácida , Animais , Células HEK293 , Humanos , Interleucina-6/biossíntese , Interleucina-6/metabolismo , Isoenzimas , Camundongos , Células NIH 3T3 , Osteíte Deformante/genética , Osteíte Deformante/prevenção & controle , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética , Ligante RANK/farmacologia , Fosfatase Ácida Resistente a Tartarato , Fator de Necrose Tumoral alfa/farmacologia
14.
J Bone Miner Res ; 28(6): 1489-500, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23426901

RESUMO

Osteoclast (OCL) precursors from many Paget's disease (PD) patients express measles virus nucleocapsid protein (MVNP) and are hypersensitive to 1,25-dihydroxyvitamin D2 (1,25-(OH)2D3; also know as calcitriol). The increased 1,25-(OH)2D3 sensitivity is mediated by transcription initiation factor TFIID subunit 12 (TAF12), a coactivator of the vitamin D receptor (VDR), which is present at much higher levels in MVNP-expressing OCL precursors than normals. These results suggest that TAF12 plays an important role in the abnormal OCL activity in PD. However, the molecular mechanisms underlying both 1,25-(OH)2D3's effects on OCL formation and the contribution of TAF12 to these effects in both normals and PD patients are unclear. Inhibition of TAF12 with a specific TAF12 antisense construct decreased OCL formation and OCL precursors' sensitivity to 1,25-(OH)2D3 in PD patient bone marrow samples. Further, OCL precursors from transgenic mice in which TAF12 expression was targeted to the OCL lineage (tartrate-resistant acid phosphatase [TRAP]-TAF12 mice), formed OCLs at very low levels of 1,25-(OH)2D3, although the OCLs failed to exhibit other hallmarks of PD OCLs, including receptor activator of NF-κB ligand (RANKL) hypersensitivity and hypermultinucleation. Chromatin immunoprecipitation (ChIP) analysis of OCL precursors using an anti-TAF12 antibody demonstrated that TAF12 binds the 24-hydroxylase (CYP24A1) promoter, which contains two functional vitamin D response elements (VDREs), in the presence of 1,25-(OH)2D3. Because TAF12 directly interacts with the cyclic adenosine monophosphate-dependent activating transcription factor 7 (ATF7) and potentiates ATF7-induced transcriptional activation of ATF7-driven genes in other cell types, we determined whether TAF12 is a functional partner of ATF7 in OCL precursors. Immunoprecipitation of lysates from either wild-type (WT) or MVNP-expressing OCL with an anti-TAF12 antibody, followed by blotting with an anti-ATF7 antibody, or vice versa, showed that TAF12 and ATF7 physically interact in OCLs. Knockdown of ATF7 in MVNP-expressing cells decreased cytochrome P450, family 24, subfamily A, polypeptide 1 (CYP24A1) induction by1,25-(OH)2D3, as well as TAF12 binding to the CYP24A1 promoter. These results show that ATF7 interacts with TAF12 and contributes to the hypersensitivity of OCL precursors to 1,25-(OH)2D3 in PD.


Assuntos
Fatores Ativadores da Transcrição/metabolismo , Calcitriol/farmacologia , Osteíte Deformante/metabolismo , Osteoclastos/metabolismo , Células-Tronco/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fatores Ativadores da Transcrição/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Osteíte Deformante/genética , Osteíte Deformante/patologia , Osteoclastos/patologia , Ligante RANK/biossíntese , Ligante RANK/genética , Elementos de Resposta , Células-Tronco/patologia , Esteroide Hidroxilases/biossíntese , Esteroide Hidroxilases/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Vitamina D3 24-Hidroxilase
15.
J Med Chem ; 55(22): 9973-87, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-23072339

RESUMO

N,N'-((4-(Dimethylamino)phenyl)methylene)bis(2-phenylacetamide) was discovered by using 3D pharmacophore database searches and was biologically confirmed as a new class of CB(2) inverse agonists. Subsequently, 52 derivatives were designed and synthesized through lead chemistry optimization by modifying the rings A-C and the core structure in further SAR studies. Five compounds were developed and also confirmed as CB(2) inverse agonists with the highest CB(2) binding affinity (CB(2)K(i) of 22-85 nM, EC(50) of 4-28 nM) and best selectivity (CB(1)/CB(2) of 235- to 909-fold). Furthermore, osteoclastogenesis bioassay indicated that PAM compounds showed great inhibition of osteoclast formation. Especially, compound 26 showed 72% inhibition activity even at the low concentration of 0.1 µM. The cytotoxicity assay suggested that the inhibition of PAM compounds on osteoclastogenesis did not result from its cytotoxicity. Therefore, these PAM derivatives could be used as potential leads for the development of a new type of antiosteoporosis agent.


Assuntos
Benzenoacetamidas/farmacologia , Medula Óssea/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Receptor CB2 de Canabinoide/agonistas , Alquilação/efeitos dos fármacos , Animais , Benzenoacetamidas/química , Ligação Competitiva , Células CHO , Morte Celular , Células Cultivadas , Cricetinae , AMP Cíclico/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Estrutura Molecular , Osteoclastos/citologia , Receptor CB2 de Canabinoide/metabolismo , Relação Estrutura-Atividade
16.
Blood ; 119(8): 1888-96, 2012 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-22223826

RESUMO

Multiple myeloma (MM) is an incurable B-cell malignancy in which the marrow microenvironment plays a critical role in our inability to cure MM. Marrow stromal cells in the microenvironment support homing, lodging, and growth of MM cells through activation of multiple signaling pathways in both MM and stromal cells. Recently, we identified annexin II (AXII) as a previously unknown factor produced by stromal cells and osteoclasts (OCL) that is involved in OCL formation, HSC and prostate cancer (PCa) homing to the BM as well as mobilization of HSC and PCa cells. AXII expressed on stromal cells supports PCa cell lodgment via the AXII receptor (AXIIR) on PCa cells, but the role of AXII and AXIIR in MM is unknown. In this study, we show that MM cells express AXIIR, that stromal/osteoblast-derived AXII facilitates adhesion of MM cells to stromal cells via AXIIR, and OCL-derived AXII enhances MM cell growth. Finally, we demonstrate that AXII activates the ERK1/2 and AKT pathways in MM cells to enhance MM cell growth. These results demonstrate that AXII and AXIIR play important roles in MM and that targeting the AXII/AXIIR axis may be a novel therapeutic approach for MM.


Assuntos
Anexina A2/metabolismo , Medula Óssea/metabolismo , Proliferação de Células , Mieloma Múltiplo/metabolismo , Receptores de Peptídeos/metabolismo , Animais , Anexina A2/genética , Anexina A2/farmacologia , Western Blotting , Células da Medula Óssea/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Células Cultivadas , Microambiente Celular , Técnicas de Cocultura , Humanos , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Osteoclastos/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Receptores de Peptídeos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
17.
Cell Metab ; 13(1): 23-34, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-21195346

RESUMO

Paget's disease (PD) is characterized by abnormal osteoclasts (OCL) that secrete high IL-6 levels and induce exuberant bone formation. Because measles virus nucleocapsid gene (MVNP) and the p62(P392L) mutation are implicated in PD, marrows from 12 PD patients harboring p62(P392L) and eight normals were tested for MVNP expression and pagetic OCL formation. Eight out of twelve patients expressed MVNP and formed pagetic OCL in vitro, which were inhibited by antisense-MVNP. Four out of twelve patients lacked MVNP and formed normal OCL that were hyperresponsive to RANKL but unaffected by antisense-MVNP. Similarly, mice expressing only p62(P394L) formed normal OCL, while mice expressing MVNP in OCL, with or without p62(P394L), developed pagetic OCL and expressed high IL-6 levels dependent on p38MAPK activation. IL-6 deficiency in MVNP mice abrogated pagetic OCL development in vitro. Mice coexpressing MVNP and p62(P394L) developed dramatic Paget's-like bone lesions. These results suggest that p62(P394L) and IL-6 induction by MVNP play key roles in PD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Vírus do Sarampo/genética , Osteíte Deformante/patologia , Osteíte Deformante/virologia , Osteoclastos/patologia , Animais , Células da Medula Óssea/patologia , Osso e Ossos/patologia , Calcitriol/farmacologia , Células Cultivadas , Feminino , Expressão Gênica , Humanos , Interleucina-6/biossíntese , Vírus do Sarampo/patogenicidade , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Mutação , Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/biossíntese , Proteínas do Nucleocapsídeo/genética , Osteíte Deformante/genética , Osteoclastos/efeitos dos fármacos , Ligante RANK/farmacologia , Proteína Sequestossoma-1 , Fatores Associados à Proteína de Ligação a TATA/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
J Bone Miner Res ; 26(1): 169-81, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20683884

RESUMO

ADAM8 expression is increased in the interface tissue around a loosened hip prosthesis and in the pannus and synovium of patients with rheumatoid arthritis, but its potential role in these processes is unclear. ADAM8 stimulates osteoclast (OCL) formation, but the effects of overexpression or loss of expression of ADAM8 in vivo and the mechanisms responsible for the effects of ADAM8 on osteoclastogenesis are unknown. Therefore, to determine the effects of modulating ADAM expression, we generated tartrate-resistant acid phosphatase (TRAP)-ADAM8 transgenic mice that overexpress ADAM8 in the OCL lineage and ADAM8 knockout (ADAM8 KO) mice. TRAP-ADAM8 mice developed osteopenia and had increased numbers of OCL precursors that formed hypermultinucleated OCLs with an increased bone-resorbing capacity per OCL. They also had an enhanced differentiation capacity, increased TRAF6 expression, and increased NF-κB, Erk, and Akt signaling compared with wild-type (WT) littermates. This increased bone-resorbing capacity per OCL was associated with increased levels of p-Pyk2 and p-Src activation. In contrast, ADAM8 KO mice did not display a bone phenotype in vivo, but unlike WT littermates, they did not increase RANKL production, OCL formation, or calvarial fibrosis in response to tumor necrosis factor α (TNF-α) in vivo. Since loss of ADAM8 does not inhibit basal bone remodeling but only blocks the enhanced OCL formation in response to TNF-α, these results suggest that ADAM8 may be an attractive therapeutic target for preventing bone destruction associated with inflammatory disease.


Assuntos
Proteínas ADAM/metabolismo , Antígenos CD/metabolismo , Proteínas de Membrana/metabolismo , Osteoclastos/citologia , Osteoclastos/enzimologia , Células-Tronco/citologia , Células-Tronco/enzimologia , Fosfatase Ácida/metabolismo , Animais , Biomarcadores/metabolismo , Reabsorção Óssea/patologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Fusão Celular , Ativação Enzimática/efeitos dos fármacos , Isoenzimas/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante RANK/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Fosfatase Ácida Resistente a Tartarato , Fator de Necrose Tumoral alfa/farmacologia , Quinases da Família src/metabolismo
19.
J Clin Invest ; 120(8): 2755-66, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20628199

RESUMO

Activating transcription factor 4 (ATF4) is a critical transcription factor for osteoblast (OBL) function and bone formation; however, a direct role in osteoclasts (OCLs) has not been established. Here, we targeted expression of ATF4 to the OCL lineage using the Trap promoter or through deletion of Atf4 in mice. OCL differentiation was drastically decreased in Atf4-/- bone marrow monocyte (BMM) cultures and bones. Coculture of Atf4-/- BMMs with WT OBLs or a high concentration of RANKL failed to restore the OCL differentiation defect. Conversely, Trap-Atf4-tg mice displayed severe osteopenia with dramatically increased osteoclastogenesis and bone resorption. We further showed that ATF4 was an upstream activator of the critical transcription factor Nfatc1 and was critical for RANKL activation of multiple MAPK pathways in OCL progenitors. Furthermore, ATF4 was crucial for M-CSF induction of RANK expression on BMMs, and lack of ATF4 caused a shift in OCL precursors to macrophages. Finally, ATF4 was largely modulated by M-CSF signaling and the PI3K/AKT pathways in BMMs. These results demonstrate that ATF4 plays a direct role in regulating OCL differentiation and suggest that it may be a therapeutic target for treating bone diseases associated with increased OCL activity.


Assuntos
Fator 4 Ativador da Transcrição/fisiologia , Diferenciação Celular , Osteoclastos/citologia , Fator 4 Ativador da Transcrição/genética , Animais , Doenças Ósseas Metabólicas/etiologia , Células da Medula Óssea/patologia , Reabsorção Óssea/etiologia , Fator Estimulador de Colônias de Macrófagos/fisiologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/fisiologia , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Ligante RANK/metabolismo
20.
Blood ; 113(20): 4894-902, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19282458

RESUMO

Adhesive interactions between multiple myeloma (MM) cells and marrow stromal cells activate multiple signaling pathways including nuclear factor kappaB (NF-kappaB), p38 mitogen-activated protein kinase (MAPK), and Jun N-terminal kinase (JNK) in stromal cells, which promote tumor growth and bone destruction. Sequestosome-1 (p62), an adapter protein that has no intrinsic enzymatic activity, serves as a platform to facilitate formation of signaling complexes for these pathways. Therefore, we determined if targeting only p62 would inhibit multiple signaling pathways activated in the MM microenvironment and thereby decrease MM cell growth and osteoclast formation. Signaling through NF-kappaB and p38 MAPK was increased in primary stromal cells from MM patients. Increased interleukin-6 (IL-6) production by MM stromal cells was p38 MAPK-dependent while increased vascular cell adhesion molecule-1 (VCAM-1) expression was NF-kappaB-dependent. Knocking-down p62 in patient-derived stromal cells significantly decreased protein kinase Czeta (PKCzeta), VCAM-1, and IL-6 levels as well as decreased stromal cell support of MM cell growth. Similarly, marrow stromal cells from p62(-/-) mice produced much lower levels of IL-6, tumor necrosis factor-alpha (TNF-alpha), and receptor activator of NF-kappaB ligand (RANKL) and supported MM cell growth and osteoclast formation to a much lower extent than normal cells. Thus, p62 is an attractive therapeutic target for MM.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Medula Óssea/metabolismo , Proliferação de Células , Meio Ambiente , Proteínas de Choque Térmico/fisiologia , Mieloma Múltiplo/patologia , Osteoclastos/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Medula Óssea/patologia , Medula Óssea/fisiologia , Células Cultivadas , Feminino , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Osteoclastos/metabolismo , Proteína Sequestossoma-1 , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Células Estromais/citologia , Células Estromais/metabolismo , Células Estromais/patologia , Regulação para Cima/genética , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...